Danh sách công bố quốc tế thuộc danh mục ISI/Scopus năm 2020
[1] M.-H. Ha, Q.-V. Vu, and V.-H. Truong, “A Deep Learning-Based Procedure for Safety Evaluation of Steel Frames Using Advanced Analysis,” 2020, pp. 1137–1142.
[2] H.-H. Le, C.-C. Vu, N.-K. Ho, and V.-T. Luu, “A method of controlling thermal crack for mass concrete structures: modelling and experimental study,” IOP Conf. Ser. Mater. Sci. Eng., vol. 869, p. 072054, Jul. 2020, doi: 10.1088/1757-899X/869/7/072054.
[3] H. Q. Tran, V. T. Vu, M. T. Tran, and P. Nguyen-Tri, “A new four-variable refined plate theory for static analysis of smart laminated functionally graded carbon nanotube reinforced composite plates,” Mech. Mater., vol. 142, p. 103294, Mar. 2020, doi: 10.1016/j.mechmat.2019.103294.
[4] Q.-M. Phan, V.-P. Nguyen, T.-N. Hoang, and N.-T. Vu, “A novel approach using sustainable structures in preventing coastal erosion and forming sandy beach in Vietnam,” IOP Conf. Ser. Mater. Sci. Eng., vol. 869, p. 072053, Jul. 2020, doi: 10.1088/1757-899X/869/7/072053.
[5] T. K. Nguyen, J. Desrues, G. Combe, and D. H. Nguyen, “A numerical homogenized law using discrete element method for continuum modelling of boundary value problems,” 2020, pp. 715–720.
[6] V.-H. Truong, Q.-V. Vu, H.-T. Thai, and M.-H. Ha, “A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm,” Adv. Eng. Softw., vol. 147, p. 102825, Sep. 2020, doi: 10.1016/j.advengsoft.2020.102825.
[7] H. T. Nghiem et al., “An investigation of the generation and management of construction and demolition waste in Vietnam,” Detritus, no. 12, pp. 135–149, Sep. 2020, doi: 10.31025/2611-4135/2020.14002.
[8] C. H. Nguyen, L. H. Tran, and K. N. Ho, “Application of Neural Network to predict the workability Parameters of Self-Compacting Concrete,” 2020, pp. 1161–1166.
[9] H. H. Le, J.-C. Morel, A.-S. Colas, B. Terrade, and D. Garnier, “Assessing the Three-Dimensional Behaviour of Dry Stone Retaining Walls by Full-Scale Experiments,” Int. J. Archit. Herit., vol. 14, no. 9, pp. 1373–1383, Oct. 2020, doi: 10.1080/15583058.2019.1607627.
[10] C.-C. Vu and J. Weiss, “Asymmetric Damage Avalanche Shape in Quasibrittle Materials and Subavalanche (Aftershock) Clusters,” Phys. Rev. Lett., vol. 125, no. 10, p. 105502, Sep. 2020, doi: 10.1103/PhysRevLett.125.105502.
[11] S.-E. Kim et al., “Behavior of composite CFST beam-concrete column joints,” Steel Compos. Struct., vol. 37, no. 1, p. 75, 2020, doi: 10.12989/scs.2020.37.1.075.
[12] T.-H. Nguyen and A.-T. Vu, “Building Information Modeling Based Optimization of Steel Single-Plate Shear Connections Using Differential Evolution Algorithm,” 2020, pp. 1199–1204.
[13] D. Thai, T. Pham, and D. Nguyen, “Damage assessment of reinforced concrete columns retrofitted by steel jacket under blast loading,” Struct. Des. Tall Spec. Build., vol. 29, no. 1, Jan. 2020, doi: 10.1002/tal.1676.
[14] H. V. Dang, H. Tran-Ngoc, T. V. Nguyen, T. Bui-Tien, G. De Roeck, and H. X. Nguyen, “Data-Driven Structural Health Monitoring Using Feature Fusion and Hybrid Deep Learning,” IEEE Trans. Autom. Sci. Eng., pp. 1–17, 2020, doi: 10.1109/TASE.2020.3034401.
[15] H. V. Dang, M. Raza, T. V. Nguyen, T. Bui-Tien, and H. X. Nguyen, “Deep learning-based detection of structural damage using time-series data,” Struct. Infrastruct. Eng., pp. 1–20, Sep. 2020, doi: 10.1080/15732479.2020.1815225.
[16] T. T. H. Ngo, B. T. Vu, and T. K. Nguyen, “Early Warning Systems for Flash Floods and Debris Flows in Vietnam: A Review,” 2020, pp. 1233–1240.
[17] T.-H. Pham and N.-V. Nguyen, “Effect of Indentation Strain Rate on Plastic Properties in SS400 Steel Weld Zone,” 2020, pp. 259–267.
[18] N. D. Anh et al., “Efficiency of mono-stable piezoelectric Duffing energy harvester in the secondary resonances by averaging method. Part 1: Sub-harmonic resonance,” Int. J. Non. Linear. Mech., vol. 126, p. 103537, Nov. 2020, doi: 10.1016/j.ijnonlinmec.2020.103537.
[19] Q. Tran et al., “Empirical Examination of Factors Influencing the Adoption of Green Building Technologies: The Perspective of Construction Developers in Developing Economies,” Sustainability, vol. 12, no. 19, p. 8067, Sep. 2020, doi: 10.3390/su12198067.
[20] C. T. Nguyen, H. H. Pham, V. T. Nguyen, S. D. Pham, and V. H. Cu, “Evaluating the Effect of Steel Fibers on Some Mechanical Properties of Ultra-High Performance Concrete,” 2020, pp. 493–501.
[21] T.-H. Nguyen and A.-T. Vu, “Evolutionary-based optimization of steel moment frames using direct analysis method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 869, p. 052077, Jul. 2020, doi: 10.1088/1757-899X/869/5/052077.
[22] N.-V. Nguyen and T.-H. Pham, “Experimental study on dynamic nanoindentation on structural weld zone,” IOP Conf. Ser. Mater. Sci. Eng., vol. 869, p. 032027, Jul. 2020, doi: 10.1088/1757-899X/869/3/032027.
[23] T. Nguyen-Tuan, “EXPERIMENTAL STUDY ON MECHANICAL AND HYDRAULIC PROPERTIES OF POROUS GEOPOLYMER CONCRETE,” Int. J. GEOMATE, vol. 19, no. 74, pp. 66–74, Oct. 2020, doi: 10.21660/2020.74.41280.
[24] H. T. Nghiem, V. C. Tran, P. D. Hoa, T. S. Kieu, and N. H. Giang, “Flow of waste and a method for prediction of demolition waste generation from buildings – A case study in Hanoi, Vietnam,” IOP Conf. Ser. Mater. Sci. Eng., vol. 869, p. 042035, Jul. 2020, doi: 10.1088/1757-899X/869/4/042035.
[25] X.-H. Dang, V.-L. Nguyen, M.-T. Tran, and B.-P. Nguyen Thi, “Free Vibration Characteristics of Rotating Functionally Graded Porous Circular Cylindrical Shells with Different Boundary Conditions,” Iran. J. Sci. Technol. Trans. Mech. Eng., Nov. 2020, doi: 10.1007/s40997-020-00413-1.
[26] T. I. Thinh, T. M. Tu, and N. Van Long, “Free vibration of a horizontal functionally graded rectangular plate submerged in fluid medium,” Ocean Eng., vol. 216, p. 107593, Nov. 2020, doi: 10.1016/j.oceaneng.2020.107593.
[27] M.-T. Tran, V.-L. Nguyen, S.-D. Pham, and J. Rungamornrat, “Free vibration of stiffened functionally graded circular cylindrical shell resting on Winkler–Pasternak foundation with different boundary conditions under thermal environment,” Acta Mech., vol. 231, no. 6, pp. 2545–2564, Jun. 2020, doi: 10.1007/s00707-020-02658-y.
[28] H.-A. Pham, V.-H. Truong, and T.-C. Vu, “Fuzzy finite element analysis for free vibration response of functionally graded semi-rigid frame structures,” Appl. Math. Model., vol. 88, pp. 852–869, Dec. 2020, doi: 10.1016/j.apm.2020.07.014.
[29] H.-A. Pham, V.-H. Truong, and M.-T. Tran, “Fuzzy static finite element analysis for functionally graded structures with semi-rigid connections,” Structures, vol. 26, pp. 639–650, Aug. 2020, doi: 10.1016/j.istruc.2020.04.036.
[30] N. Tuan Trung, N. Truong Thang, and V. M. Tung, “Granular material pressure to reinforced concrete walls of cylindrical slender silos: Analysis and Experimental studies according to Eurocodes,” IOP Conf. Ser. Mater. Sci. Eng., vol. 869, p. 052045, Jul. 2020, doi: 10.1088/1757-899X/869/5/052045.
[31] K. Tuan Ngo, T. Dung Nguyen, Q. Minh Phan, V. Tuan Nguyen, and K. Kawamoto, “Influence of AAC grains on some properties of permeable pavement utilizing of CDW and industrial by-product,” IOP Conf. Ser. Mater. Sci. Eng., vol. 869, p. 032046, Jul. 2020, doi: 10.1088/1757-899X/869/3/032046.
[32] T. K. Nguyen, J. Rohmer, and B. T. Vu, “Influence of heterogeneous fractured fault damage zones on shear failure onset during fluid injection,” 2020, pp. 721–726.
[33] H. P. Nguyen, N. L. Le, C. T. Nguyen, V. T. Nguyen, T. T. Nguyen, and X. H. Nguyen, “Lightweight Concrete Using Lightweight Aggregates from Construction and Demolition Wastes—Production and Properties,” 2020, pp. 581–588.
[34] T. I. Thinh, D. H. Bich, T. M. Tu, and N. Van Long, “Nonlinear analysis of buckling and postbuckling of functionally graded variable thickness toroidal shell segments based on improved Donnell shell theory,” Compos. Struct., vol. 243, p. 112173, Jul. 2020, doi: 10.1016/j.compstruct.2020.112173.
[35] T. M. Tu, L. K. Hoa, D. X. Hung, and L. T. Hai, “Nonlinear buckling and post-buckling analysis of imperfect porous plates under mechanical loads,” J. Sandw. Struct. Mater., vol. 22, no. 6, pp. 1910–1930, Sep. 2020, doi: 10.1177/1099636218789612.
[36] P. M. Vuong and N. D. Duc, “Nonlinear buckling and post-buckling behavior of shear deformable sandwich toroidal shell segments with functionally graded core subjected to axial compression and thermal loads,” Aerosp. Sci. Technol., vol. 106, p. 106084, Nov. 2020, doi: 10.1016/j.ast.2020.106084.
[37] D. X. Hung, T. M. Tu, N. Van Long, and P. H. Anh, “Nonlinear buckling and postbuckling of FG porous variable thickness toroidal shell segments surrounded by elastic foundation subjected to compressive loads,” Aerosp. Sci. Technol., vol. 107, p. 106253, Dec. 2020, doi: 10.1016/j.ast.2020.106253.
[38] P. M. Vuong and N. D. Duc, “Nonlinear static and dynamic stability of functionally graded toroidal shell segments under axial compression,” Thin-Walled Struct., vol. 155, p. 106973, Oct. 2020, doi: 10.1016/j.tws.2020.106973.
[39] P. M. Vuong and N. D. Duc, “Nonlinear vibration of FGM moderately thick toroidal shell segment within the framework of Reddy’s third order-shear deformation shell theory,” Int. J. Mech. Mater. Des., vol. 16, no. 2, pp. 245–264, Jun. 2020, doi: 10.1007/s10999-019-09473-x.
[40] D.-X. Nguyen and H.-A. Pham, “Optimal Compensation of Axial Shortening in Tall Buildings by Differential Evolution,” 2020, pp. 1137–1144.
[41] M.-H. Ha, Q.-V. Vu, and V.-H. Truong, “Optimization of nonlinear inelastic steel frames considering panel zones,” Adv. Eng. Softw., vol. 142, p. 102771, Apr. 2020, doi: 10.1016/j.advengsoft.2020.102771.
[42] S. D. Pham, V. T. Nguyen, T. T. Le, and C. T. Nguyen, “Possibility of Using High Volume Fly Ash to Produce Low Cement Ultra High Performance Concrete,” 2020, pp. 589–597.
[43] D. Van Thuat, H. Viet Chuong, and B. Duong, “Relationship of strength reduction factor and maximum ductility factor for seismic design of one-storey industrial steel frames,” Asian J. Civ. Eng., vol. 21, no. 5, pp. 841–856, Jul. 2020, doi: 10.1007/s42107-020-00244-0.
[44] V.-H. Truong and M.-H. Ha, “Reliability-based design optimization of steel frames using direct design,” IOP Conf. Ser. Mater. Sci. Eng., vol. 869, p. 052009, Jul. 2020, doi: 10.1088/1757-899X/869/5/052009.
[45] C.-C. Vu, O. Plé, J. Weiss, and D. Amitrano, “Revisiting the concept of characteristic compressive strength of concrete,” Constr. Build. Mater., vol. 263, p. 120126, Dec. 2020, doi: 10.1016/j.conbuildmat.2020.120126.
[46] N. Van Hung, N. X. Huy, P. T. T. Thuy, N. N. Linh, and P. X. Dat, “Shaking table tests on V-shaped RC columns at the weak ground storey of a building,” Mag. Concr. Res., vol. 72, no. 11, pp. 564–577, Jun. 2020, doi: 10.1680/jmacr.18.00360.
[47] C.-C. Vu, J. Weiss, O. Plé, and D. Amitrano, “Size effects on the mechanical behavior and the compressive failure strength of concrete: an extensive dataset,” Data Br., vol. 33, p. 106477, Dec. 2020, doi: 10.1016/j.dib.2020.106477.
[48] T.-H. Pham and N.-V. Nguyen, “Statistical analysis of yield strength spectrum from nanoindentation for identification of constituent phases in steel,” IOP Conf. Ser. Mater. Sci. Eng., vol. 869, p. 052038, Jul. 2020, doi: 10.1088/1757-899X/869/5/052038.
[49] T. T. Ngoc, N. Huy, N. Cuong, and V. Son, “Strut-and-tie model for shear capacity of corroded reinforced concrete columns,” Adv. Concr. Constr., vol. 10, no. 3, pp. 185–193, 2020, doi: https://doi.org/10.12989/acc.2020.10.3.185.
[50] N. H. Giang, N. H. Tan, N. T. Quang, N. X. Hien, and K. Kawamoto, “Sustainable management and technologies for recycled construction demolition waste in Vietnam,” IOP Conf. Ser. Mater. Sci. Eng., vol. 869, p. 032040, Jul. 2020, doi: 10.1088/1757-899X/869/3/032040.
[51] N. Van Dong, P. H. Hanh, N. Van Tuan, P. Q. Minh, and N. V. Phuong, “The effect of mineral admixture on the properties of the binder towards using in making pervious concrete,” 2020, pp. 367–372.
[52] T.-H. Nguyen and A.-T. Vu, “Using Neural Networks as Surrogate Models in Differential Evolution Optimization of Truss Structures,” 2020, pp. 152–163.
[53] C. T. Viet, T. N. Van, G. N. Hoang, and K. Ken, “Utilization of Construction and Demolition Waste (CDW) for Unbound Road Subbase in Hanoi, Vietnam,” 2020, pp. 731–735.